

Robust Subspace Clustering Approach for High-Dimensional MRF: Novel Simultaneous Clustering and Dimensionality Reduction at Scale

Geoffroy Oudoumanessah^{1,2,4}, Thomas Coudert¹, Antoine Barrier¹, Aurélien Delphin³, Carole Laritzien⁴, Michel Dojat^{1,2}, Emmanuel L. Barbier¹, Thomas Christen¹, Florence Forbes²

¹Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, Grenoble, France
²Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
³Univ. Grenoble Alpes, Inserm, US17, CNRS, UAR 3552, CHU Grenoble Alpes, IRMaGe, Grenoble, France
⁴Univ. Lyon, CNRS, Inserm, INSA Lyon, UCBL, CREATIS, UMR5220, U1294, F-69621, Villeurbanne, France

Introduction

- Magnetic Resonance Fingerprinting (MRF) enables simultaneous acquisition of multiple tissue property maps (e.g. T1, T2, T2*, CBV, R).
- MRF requires to store a large dictionary of high-dimensional simulated pairs of parameters and signals.
- Prior work with only T1, T2, T2* with HD-GMM: not efficient [1]
- <u>Proposed solution</u>: Scalable approach using High Dimensional Student Mixture Model to compress the signals and enable **fast and accurate map**

reconstruction.

Online learning of High Dimensional Student Mixture Model (HD-STM)

> Student mixture model: $p(\mathbf{y}; \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k \mathcal{S}_M(\mathbf{y}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \nu_k)$

 \succ High-Dimensional hypothesis: $\Sigma_k = \mathbf{D}_k \mathbf{A}_k \mathbf{D}_k^T$ with $\mathbf{A}_k = \text{diag}(a_1, \dots, a_{d_k}, b_k, \dots, b_k)$

> We learn HD-STM using the online EM algorithm [2]

$$p(\boldsymbol{y};\boldsymbol{\theta}) \propto \exp\left(\phi\left(\boldsymbol{\theta}\right)^{T} \boldsymbol{s}\left(\boldsymbol{y}\right) - \psi\left(\boldsymbol{\theta}\right)\right) \rightarrow \begin{cases} S_{n} = (1 - \gamma_{n})S_{n-1} + \gamma_{n}\mathbb{E}_{\boldsymbol{\Theta}_{n-1}}[\boldsymbol{s}(\boldsymbol{Y}_{n})] & \text{E-step} \\ \boldsymbol{\Theta}_{n} = \operatorname{argmax} \phi(\boldsymbol{\Theta}_{n-1})S_{n} + \Psi(\boldsymbol{\Theta}_{n-1}) & \text{M-step} \end{cases}$$

 \succ The main EM computations involve quadratic quantities that do not depend on the last $M - d_k$ columns of \mathbf{D}_k

$$(\boldsymbol{y} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Sigma}_{k}^{-1} (\boldsymbol{y} - \boldsymbol{\mu}_{k}) = ||\boldsymbol{\mu}_{k} - P_{k} (\boldsymbol{y})||_{\boldsymbol{\widetilde{\Sigma}}_{k}^{-1}}^{2} + \frac{1}{b_{k}} ||\boldsymbol{y} - P_{k} (\boldsymbol{y})||^{2}$$

> Noting $\widetilde{\mathbf{D}}_k$ the matrix consisting of the first d_k columns of \mathbf{D}_k then the projection onto a lower dimensional space of an observation is $\hat{\mathbf{y}}_k = \widetilde{\mathbf{D}}_k^T (\mathbf{y} - \boldsymbol{\mu}_k)$

Divide & Conquer HD matching for MRF reconstruction

Results: ROI values & Maps reconstructions

Parameter	Tissue	HD-STM	Literature
T1 (ms)	WM GM	863 ± 17 1,655 ± 68	$\sim 690 - 1,100 \ \sim 1,286 - 1,393$
T2 (ms)	WM GM	$50 \pm 2 \\ 102 \pm 15$	$\sim 56 - 80$ $\sim 78 - 117$
CBV (%)	WM GM	$3.9 \pm 0.5 \\ 6.1 \pm 0.9$	$\sim 1.7 - 3.6$ $\sim 3.0 - 8.0$
R (µm)	WM GM	$5.6 \pm 0.05 \\ 5.9 \pm 0.1$	$6.8 \pm 0.3 \\ 7.3 \pm 0.3$

Mean and standard deviation of reconstructed T1, T2, CBV, and R values in white matter (WM) and gray matter (GM) across all available slices for six volunteers. Manually drawn ROIs were used, and the values are compared to literature standards in the table.

Reconstruction of six parameters (T1, T2, Δ f, B1, CBV, and R) from a single slice of one subject, comparing traditional matching, HD-STM, and HD-GMM methods.

Ínría

[1] Oudoumanessah G., Coudert T., et al. " Cluster globally, Reduce locally: Scalable efficient dictionary compression for magnetic resonance fingerprinting" 22th IEEE International Symposium on Biomedical Imaging

[2] Cappé O., and Moulines E. "On-line expectation–maximization algorithm for latent data models." *Journal of the Royal Statistical Society Series B: Statistical Methodology* 71.3 (2009): 593-613.

Inserm

science pour la santé _____ From science to health [3] Oudoumanessah G., Coudert T., et al. "Scalable magnetic resonance fingerprinting: Incremental inference of high dimensional elliptical mixtures from large data volumes." *arXiv preprint arXiv:2412.10173* (2024).

Takeaway

• HD-STM can be used for any other dimension reduction task

 HD-STM can be generalized to HD mixture of Elliptical distributions [3]